Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(9): e1007628, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30235212

RESUMO

Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system.


Assuntos
Anquirinas/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Autoimunidade/genética , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Alelos , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Resistência à Doença/genética , Mutação , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais/imunologia
2.
Curr Biol ; 27(8): 1148-1160, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28416116

RESUMO

When independently evolved immune receptor variants meet in hybrid plants, they can activate immune signaling in the absence of non-self recognition. Such autoimmune risk alleles have recurrently evolved at the DANGEROUS MIX2 (DM2) nucleotide-binding domain and leucine-rich repeat (NLR)-encoding locus in A. thaliana. One of these activates signaling in the presence of a particular variant encoded at another NLR locus, DM1. We show that the risk variants of DM1 and DM2d NLRs signal through the same pathway that is activated when plant NLRs recognize non-self elicitors. This requires the P loops of each protein and Toll/interleukin-1 receptor (TIR)-domain-mediated heteromeric association of DM1 and DM2d. DM1 and DM2d each resides in a multimeric complex in the absence of signaling, with the DM1 complex shifting to higher molecular weight when heteromerizing DM2 variants are present. The activation of the DM1 complex appears to be sensitive to the conformation of the heteromerizing DM2 variant. Autoimmunity triggered by interaction of this NLR pair thus suggests that activity of heteromeric NLR signaling complexes depends on the sum of activation potentials of partner NLRs.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Proteínas NLR/imunologia , Imunidade Vegetal , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Autoimunidade/genética , Mutação , Proteínas NLR/genética , Imunidade Vegetal/genética , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Transdução de Sinais
3.
Cell ; 159(6): 1341-51, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25467443

RESUMO

Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hot spots in the genome, often in regions densely populated by nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DM2, which causes multiple independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors limit the combinations of favorable disease resistance alleles accessible to plant genomes.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Epistasia Genética , Sequência de Aminoácidos , Arabidopsis/classificação , Cruzamentos Genéticos , Genoma de Planta , Hibridização Genética , Dados de Sequência Molecular , Filogenia , Fenômenos Fisiológicos Vegetais , Alinhamento de Sequência
4.
Development ; 136(10): 1613-20, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19395639

RESUMO

Flowers develop from floral meristems, which harbor stem cells that support the growth of floral organs. The MADS domain transcription factor AGAMOUS (AG) plays a central role in floral patterning and is required not only for the specification of the two reproductive organ types, but also for termination of stem cell fate. Using a highly conserved cis-regulatory motif as bait, we identified the bZIP transcription factor PERIANTHIA (PAN) as a direct regulator of AG in Arabidopsis. PAN and AG expression domains overlap, and mutations in either the PAN-binding site or PAN itself abolish the activity of a reporter devoid of redundant elements. Whereas under long-day conditions pan mutants have merely altered floral organ number, they display in addition typical AG loss-of-function phenotypes when grown under short days. Consistently, we found reduced AG RNA levels in these flowers. Finally, we show that PAN expression persists in ag mutant flowers, suggesting that PAN and AG are engaged in a negative-feedback loop, which might be mediated by the stem-cell-inducing transcription factor WUSCHEL (WUS).


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Padronização Corporal/fisiologia , Proteínas de Ligação a DNA/fisiologia , Flores/fisiologia , Fatores de Transcrição/fisiologia , Proteína AGAMOUS de Arabidopsis/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Retroalimentação Fisiológica , Flores/anatomia & histologia , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Mutação , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/genética
5.
Nature ; 438(7071): 1172-5, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16372013

RESUMO

Plants continuously maintain pools of totipotent stem cells in their apical meristems from which elaborate root and shoot systems are produced. In Arabidopsis thaliana, stem cell fate in the shoot apical meristem is controlled by a regulatory network that includes the CLAVATA (CLV) ligand-receptor system and the homeodomain protein WUSCHEL (WUS). Phytohormones such as auxin and cytokinin are also important for meristem regulation. Here we show a mechanistic link between the CLV/WUS network and hormonal control. WUS, a positive regulator of stem cells, directly represses the transcription of several two-component ARABIDOPSIS RESPONSE REGULATOR genes (ARR5, ARR6, ARR7 and ARR15), which act in the negative-feedback loop of cytokinin signalling. These data indicate that ARR genes might negatively influence meristem size and that their repression by WUS might be necessary for proper meristem function. Consistent with this hypothesis is our observation that a mutant ARR7 allele, which mimics the active, phosphorylated form, causes the formation of aberrant shoot apical meristems. Conversely, a loss-of-function mutation in a maize ARR homologue was recently shown to cause enlarged meristems.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Meristema/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Meristema/efeitos dos fármacos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nat Genet ; 37(5): 501-6, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15806101

RESUMO

Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Perfilação da Expressão Gênica , Expressão Gênica/fisiologia , Marcadores Genéticos
7.
Development ; 130(24): 6001-12, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14573523

RESUMO

Flowering of the reference plant Arabidopsis thaliana is controlled by several signaling pathways, which converge on a small set of genes that function as pathway integrators. We have analyzed the genomic response to one type of floral inductive signal, photoperiod, to dissect the function of several genes transducing this stimulus, including CONSTANS, thought to be the major output of the photoperiod pathway. Comparing the effects of CONSTANS with those of FLOWERING LOCUS T, which integrates inputs from CONSTANS and other floral inductive pathways, we find that expression profiles of shoot apices from plants with mutations in either gene are very similar. In contrast, a mutation in LEAFY, which also acts downstream of CONSTANS, has much more limited effects. Another pathway integrator, SUPPRESSOR OF OVEREXPRESSION OF CO 1, is responsive to acute induction by photoperiod even in the presence of the floral repressor encoded by FLOWERING LOCUS C. We have discovered a large group of potential floral repressors that are down-regulated upon photoperiodic induction. These include two AP2 domain-encoding genes that can repress flowering. The two paralogous genes, SCHLAFMUTZE and SCHNARCHZAPFEN, share a signature with partial complementarity to the miR172 microRNA, whose precursor we show to be induced upon flowering. These and related findings on SPL genes suggest that microRNAs play an important role in the regulation of flowering.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Animais , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/anatomia & histologia , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Fotoperíodo , Polimorfismo Genético , Transdução de Sinais/fisiologia , Estatística como Assunto , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...